Nvidia-cuda
查看显卡计算能力 Compute Capability
GeForce and TITAN Products Geforce RTX 3060 8.6
Check Nvidia version
deviceQuery
cd /usr/local/cuda-11.3/samples/1_Utilities/deviceQuery
./devicequery
Copy to HOME folder to make if not maked before.
~./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce RTX 3060 Laptop GPU"
CUDA Driver Version / Runtime Version 11.4 / 11.3
CUDA Capability Major/Minor version number: 8.6
Total amount of global memory: 5947 MBytes (6235422720 bytes)
(030) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores
GPU Max Clock rate: 1702 MHz (1.70 GHz)
Memory Clock rate: 7001 Mhz
Memory Bus Width: 192-bit
L2 Cache Size: 3145728 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 102400 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.3, NumDevs = 1
Result = PASS
NVIDIA X server settings
lspci查看GPU型号
~ lspci | grep -i nvidia
01:00.0 VGA compatible controller: NVIDIA Corporation Device 2560 (rev a1)
01:00.1 Audio device: NVIDIA Corporation Device 228e (rev a1)
nvidia-smi
Fan:显示风扇转速,数值在0到100%之间,是计算机的期望转速,如果计算机不是通过风扇冷却或者风扇坏了,显示出来就是N/A; Temp:显卡内部的温度,单位是摄氏度; Perf:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能; Pwr:能耗表示; Bus-Id:涉及GPU总线的相关信息; Disp.A:是Display Active的意思,表示GPU的显示是否初始化; Memory Usage:显存的使用率; Volatile GPU-Util:浮动的GPU利用率; Compute M:计算模式;
Check driver version
查看NVIDIA驱动版本
~ cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module 470.86 Tue Oct 26 21:55:45 UTC 2021
GCC version: gcc version 8.4.0 (Ubuntu 8.4.0-3ubuntu2)
OR
udo dpkg --list | grep nvidia-*
[sudo] password for yubao:
ii libnvidia-cfg1-470:amd64 470.86-0ubuntu0.20.04.1 amd64 NVIDIA binary OpenGL/GLX configuration library
ii libnvidia-common-465 470.86-0ubuntu0.20.04.1 all Transitional package for libnvidia-common-470
ii libnvidia-common-470 470.86-0ubuntu0.20.04.1 all Shared files used by the NVIDIA libraries
ii libnvidia-compute-465:amd64 470.86-0ubuntu0.20.04.1 amd64 Transitional package for libnvidia-compute-470
ii libnvidia-compute-470:amd64 470.86-0ubuntu0.20.04.1 amd64 NVIDIA libcompute package
ii libnvidia-compute-470:i386 470.86-0ubuntu0.20.04.1 i386 NVIDIA libcompute package
ii libnvidia-container-tools 1.7.0-1 amd64 NVIDIA container runtime library (command-line tools)
ii libnvidia-container1:amd64 1.7.0-1 amd64 NVIDIA container runtime library
Errors
F1213 06:10:43.716547 365 im2col.cu:61] Check failed: error == cudaSuccess (209 vs. 0) no kernel image is available for execution on the device
*** Check failure stack trace: ***
@ 0x7fe53d7a20cd google::LogMessage::Fail()
@ 0x7fe53d7a3f33 google::LogMessage::SendToLog()
@ 0x7fe53d7a1c28 google::LogMessage::Flush()
@ 0x7fe53d7a4999 google::LogMessageFatal::~LogMessageFatal()
@ 0x7fe53a9c0e95 caffe::im2col_gpu<>()
@ 0x7fe53a7bfeb6 caffe::BaseConvolutionLayer<>::conv_im2col_gpu()
@ 0x7fe53a7bffb6 caffe::BaseConvolutionLayer<>::forward_gpu_gemm()
@ 0x7fe53a971c41 caffe::ConvolutionLayer<>::Forward_gpu()
@ 0x7fe53a8e5322 caffe::Net<>::ForwardFromTo()
@ 0x7fe53a8e5437 caffe::Net<>::Forward()
@ 0x7fe53e1d210a Classifier::Predict()
@ 0x7fe53e1c2549 segnet_ros::SegNet::SegmentImage()
@ 0x7fe53e1c5088 segnet_ros::SegNet::Run()
@ 0x7fe53b53ebcd (unknown)
@ 0x7fe53b3156db start_thread
@ 0x7fe53cf2571f clone
[segnet_action_server-2] process has died [pid 351, exit code -6, cmd /root/catkin_ws/devel/lib/segnet_ros/segnet_action_server __name:=segnet_action_server __log:=/root/.ros/log/5ff90f90-5bdb-11ec-be69-e02be97a7691/segnet_action_server-2.log].
log file: /root/.ros/log/5ff90f90-5bdb-11ec-be69-e02be97a7691/segnet_action_server-2*.log
Solution:
- Check Your GPU Compute Capability Your GPU Compute Capability
- [ caffe运行错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0) invalid device function](https://www.cnblogs.com/haiyang21/p/7381032.html)
- error == cudaSuccess (209 vs. 0) no kernel image is available for execution on the device
- Nvidia/Titan RTX Check failed: error == cudaSuccess (48 vs. 0) no kernel image is available for execution on the device 1290
References
Archives
2019/03 (14) 2020/08 (1) 2021/01 (2) 2021/05 (2) 2021/12 (2) 2022/03 (2) 2022/04 (2) 2023/12 (2) 2024/01 (5) 2024/04 (1) 2024/05 (1)Tags
Recent Posts